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SUEWARY 

A finite difference method for the solution 

of an axi-symmetric expansion of a perfect gas into 

vacuum is developed. The method is applied to the 

expansion of a gas with an equation of state of the 

form of Tillotsgn's equation. The solution obtained 

by the finite difference method for a perfect gas 

expansion is compared to the characteristic solution 

to check the validity of the finite difference method. 

A similarity solution for the perfect gas expansion is 

compared to the long-term finite difference solution. 
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1. INTRODUCTION 

complete d e s c r i p t i o n  of the phys ic s  of the problem of 

the hype rve loc i ty  impact of a c y l i n d r i c a l  pe l le t  w i t h  a t h i n  

bumper p la te  has been described i n  an  ear l ier  report by  Bu l l  1 . 
Due t o  the complexities of the v a r i o u s  p h y s i c a l  mechanisms 

involved  and t h e i r  i n t e r a c t i o n s  w i t h  one ano the r ,  the method 

of approach toward a complete numerical  s o l u t i o n  of the impact 

model w i l l  be t o  i n v e s t i g a t e  each mechanism s e p a r a t e l y  and then  

t o  compile t h e m  together s t e p  by s tep  t o  form the f i n a l  complete 

model. To adequate ly  descr ibe  the phenomena involved ,  a num- 

e r i c a l  t echnique  i n  t h r e e  independent v a r i a b l e s ,  ( t w o  space  

v a r i a b l e s  and the t i m e  v a r i a b l e )  must be developed. I n  t h i s  

r e p o r t ,  the f i r s t  phase of the a n a l y t i c a l  program on the dev- 

elopment of a f i n i t e  d i f f e r e n c e  method i n  one space v a r i a b l e  

f o r  t h e  s o l u t i o n  of t h e  r a d i a l  expansion of  a c y l i n d r i c a l  gas 

c loud  i n t o  a vacuum i s  presented.  P rov i s ions  are made i n  t h e  

program such t h a t  any a r b i t r a r y  equa t ion  of s t a t e  can be used 

and numerical  s o l u t i o n s  f o r  t w o  c a s e s  of  impact of aluminum 

pel le ts  w i t h  aluminum bumpers us ing  T i l l o t s o n ' s  equa t ion  of 

s t a t e  a r e  given. The f i n i t e  d i f f e r e n c e  s o l u t i o n s  a r e  checked 

a g a i n s t  the c h a r a c t e r i s t i c  s o l u t i o n s  f o r  a few cases  t o  det-  

ermine the accuracy of t h e  so lu t ions .  

1.1. The P r o b l e m  

The p h y s i c a l  model cons is t s  of a n  i n f i n i t e l y  long  cy l ind-  

r i c a l  g a s  c loud w i t h  a uniform d e n s i t y  d i s t r i b u t i o n  a t  t i m e  



L 

t = 0. A t  l a t e r  t i m e s  t h e  gas  c loud i s  allowed t o  expand i n t o  

a vacuum. The problem involves  only  one s p a t i a l  v a r i a b l e  r ;  

Iience bo th  the c h a r a c t e r i s t i c  method and the f i n i t e  d i f f e r e n c e  

method a r e  s t r a i g h t  forward. However, t h e  f i n i t e  d i f f e r e n c e  

approach i s  e a s i e r  t o  handle  whentwo s p a t i a l  v a r i a b l e s  a r e  

involved. Ex i s t ing  s o l u t i o n s  f o r  t h i s  probletn a r e  of t h e  

s i m i l a r i t y  type which h o l d  on ly  under t w o  p a r t i c u l a r  cond- 

i t i o n s ;  ( i) when t h e  i n i t i a l  d e n s i t y  d i s t r i b u t i o n  i n  t h e  gas  

c loud i s  a p a r t i c u l a r  f u n c t i o n  of r ;  (ii) A t  ve ry  l a r g e  

t i m e s  when the flow i s  i n e r t i a  dominated f o r  t h e  case  of an 

i n i t i a l l y  uniform d e n s i t y  d i s t r i b u t i o n  ". 
by t h e  p re sen t  method can be checked a g a i n s t  t h e  s i m i l a r i t y  

s o l u t i o n  of case (ii) . 

Hence t h e  s o l u t i o n s  
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2. AK&gIYSIS 

2.1. Equations of Motion 

The b a s i c  equations governing the  i s e n t r o p i c  ex- 

panJlcn of a gas cqa %e written as: 

The f i r s t  law ef thermodynamics for a particle  i s  

w h e r e  
, 

.?i- * Q  for a plan? expansion 
iJ 

2 . 2  

2.3 

for a c y l i r d r i c a l  ex:Dai:sicn 

for a spherical. expansior? 

The bar ( - )  above the  phys ica l  q u a n t i t i e s  i n  
i= 2 

Bq. 2 . 1  t0 2 . 3  ind ica te  that  t h e s e  qual?-t i t ies  have dimer:- 

sions. 

Since  an i s e n t r o p i c  expaneion i s  considered,  

&c3 s 0 

and Eq. 2 . 3  i s  w r i t t e l - A  a s  

This equation may be integrated to y i e i d  

2. L! 
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For a perfect gas, the equation of an isentrope is 

cons t . - 2 - 
s y  

and the speed of sound is given by 

2.5 

2.6 

2.7 

For a non-perfect gas, the equation of state is of the 

form 

2.8 

and Eq. 2.5 must be ii2tegrated to obtain the pressure at 

each value of density. 

2.2. Non-Dimensionalization of Basic Equations 

it is convenient to write the basic equations in non- 

dimensiona.1 form. 

Setting: 

t = d, 'l" 
I 
J 

2 . 3  
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Eqs. 2.1 and 2 . 2  become: 

2.10 
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3 .  CE-IARACTERISTIC SOLUTION FOR PERFECT GAS 

3.1. Characteristic Relations: 

A solution of the expansion by the method of 

characteristics is obtained for later comparison to the 

finite difference solution which is developed. The rel- 

ations along a )I, a:ld \z characteristic line can be 

written as: 

- d-r- = A+& 
dt x ,  

d4-L + - I d3" = - a ?  dt 
P 

x, : - dr - - &-& 

- d L +  ,- I 
P 

at 

"p = -p dt < 

and together with the isentropic and the speed of sound 

relationships, 

* =  
P 8  
CL -* '6.g - 3  d 

Q 
Eqs. 

character is tic paths . 
2.10 and 2.11 can be integrated numerica;ly along the 

const. 

3.1 

3.2 

3.3 

3 . 4 

3.5 

3 . 6  
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t 

3.2 Finite Difference Approximation 

A 

Fig. 3.1 

Referring to Fig. 3.1, Eqs 3.1 to 3.4 can be 

written in finite difference form. If the grid points are 

sufficiently close together, the dependent variables can 

be assumed to vary ?inearly between tke adjacent points. 

E q s .  3.1 to 3.4 then become in the first order linear 

approximation: 

Eliminating y p  from Eqs. 3.7 and 3.9 

3.7 

3 . 3  

3.9 

3.10 

3.11 
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Re-arranging Eq. 3 . 7  

El imina t ing  T,, f r o m  E q s .  3 . 3  and 3 . 1 0  

3.12 

Re-arra,nging Eq.  3 . 8  

3.14 

If  t h e  p r o p e r t i e s  a t  p o i n t s  A and B a r e  known, 

pp can be found from E q s .  3.11 t o  t h e n  t p ,  T p ,  A,= and 

3.14. The va lues  of a p  aiid q p  can then  be determined 

f r o m  E q s .  3 . 5  and 3 . 6 .  A m o r e  d e t a i l e d  o u t l i n e  of t h e  

numerical  procedure ( inc lud ing  a second o r d e r  approximation) 

i s  g iven  i n  S e c t i o n  7 . 1 .  

3 3 .  Boundary Condit ions 

t 

Fig. 3 . 2  
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The boundary condi t ions  a t  the head of  t h e  expans- 

i o n  f r o n t  AB (Fig.  3.2) which must be s a t i s f i e d  are as 

fo l lows  : 

1 3.15 

where the s u b s c r i p t  "ex" refers t o  va lues  of t h e  properties 

a t  t h e  expansion f r o n t .  

3.4 Treatment A t  The Center 

I n  order t o  avoid the  s i n g u l a r i t y  i n  t h e  t e r m  

!&& ( i n  E q s ,  3.2 and 3.4) as r-0, a s l ende r  rod  of 

r a d i u s  0.0001 t i m e s  t h e  r ad ius  of t h e  i n i t i a l  gas  c loud  

1 

4 q  

is p laced  i n  t h e  f l o w .  The d e t a i l e d  numerical  procedure 

f o r  c a l c u l a t i n g  p o i n t s  a t  t h e  c e n t e r  i s  g iven  i n  Sec t ion  7.1. 
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4. 

4.1 Basic Equations 

F I N I T E  DIFFERENCE SOLUTION FOR PERFECT GAS 

For the solution of the expansion of a perfect 

gas by the finite difference method, the isentropic relation 

( E q .  2.63 and Eq.  2.7 are used to transform E q s .  2.10 

and 2.11 to the following forms: 

4.2 

Equations 4.1 and 4.2 can be re-arranged to 

yield the time derivatives of the variables ''a'' and "u" 

in terms of the spatial derivatives of the same variables 

and the values of these variables. 

4.2 Numerical Determination of The Derivatives 

'c Fig. 4'. 1 
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I n  o r d e r  t o  proceed wi th  t l ie f i r i t e  d i f f e r e n c e  

s o l u t i o n ,  t h e  d e r i v a t i v e s  of t h e  f l u i d  p r o p e r t i e s  a t  tlie 

p o i n t  ( r , t )  must be obtained. Assuming t h a t  tlie properties 

are known for all va lues  of r a t  t i m e  t ,  one can w r i t e :  

4 .5  

The values of 3 A ( . t )  and a dy,t)  can 
at 8 

now be found from E q s .  4.3 and 4.4 us ing  t h e  va lues  of 

a ( r , t ) ,  u ( r , t )  and t h e  values  of &&(-C,t)and 2 &(c,t) w '3c 
eva lua ted  from E q s .  4.5 and 4.6,  

One can a l sc  ~ ! r i ~ e  t h e  fo l lowing  f i n i t e  - 
ence r e l a t i o n s h i p s :  

d i f f e r -  

4.7 

4.3 

E q s .  4.7 and 4.; can be r e a r r a n g e d  as follows: 
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Values f o r  , k ( r , t  + A t )  and a . ( r , t  + 4 t)  a r e  now determined: 

t 

Fig.  4.2 

By t h e  above procedure,  t h e  p r o p e r t i e s  a . t  p o i n t s  

11 t o  1 6  (Fig. 4 . 2 )  can be found from the  known v a l u e s  

of t h e  p r o p e r t i e s  a t  p o i n t s  1 through 8 .  The p r o p e r t i e s  

at p o i n t s  9 and  18 a r e  known. S ince  t h e  boundary cond- 

i t i o n s  a t  the expansion f r o n t  and a t  t h e  escape f r o n t  a r e  

known (Sect ion 4 . 3 )  , the  p r o p e r t i e s  a t  p o i n t  10  can be 

found by l i n e a r  i n t e r p o l a t i o n  between p o i n t s  9 and 11, 

and those  a t  p o i n t  1 7  by l i n e a r  i n t e r p o l a t i o n  between 

p o i n t s  1 6  and 18. Fur the r  i n t e r p o l a t i o n  m u s t  take p l a c e  

if t h e  expansion o r  escape f r o n t s  do n o t  pas s  through a 

g r i d  p o i n t ,  b u t  t h i s  w i l l  be c l a r i f i e d  i n  Sec t ion  7 . 2 .  
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4.3 Boundary ConditiQna 

The boundary conditions at the expansion and 

escape fronts for a perfect gas can be expressed as: 

4.12 

where the subscript "ex" refers to  -.perties at the  expans- 

ion front, and "es" to properties at the escape front. 
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4.4. Treatment ~ A t  The Center  

Once t h e  properties a t  t = 1 have been determined 

( p o i n t s  1, 2 ,  3 ..... i n  Fig.  4 .3 )  it rema.ins t o  f i n d  t h e  

properties a t  t = 1 + A t ( p o i n t s  5 ,  6 ,  7 . .  . . . ).  A t  t h e  

c e n t e r  where r = 0 ,  u i s  an  odd f u n c t i o n  of r and a i s  an  

even func t ion  of r , 

4.13 

4.14 

The spa t ia .1  de r iva . t i ves  of u and a. a.re t h e r e f o r e  

/Ct II_ ( 4 4  4.15 

Af 

0 4.16 
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The term A i n  Eq. 4.1 has a l i m i t  a t  r = 0. 
( A T -  

oan be fsiund from Eq. 4.3 us ing  Eqs. 4-15,  

4.16 and 4.17 and t h e  known p r o p e r t i e s  a t  1. 

can s imi la r ly  be found from Eq, 4.4. E4 
Egs. 4.9 and 4.10 can be re -wr i t t en  for t h e  case r = @ 

usfng  E q s .  4 . 1 3  and 4.14. 

For p o i n t  5 t h e r e f o r e ,  

% I ,  

4-13 

4- 19  

4 . 2 0  

4.21 

i s  found from E q s .  4.4, 4.15 and 4.16, 
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Since 

z o  at I 4.22 

4.23 

The properties a.t points 6, 7 ,  3.. . . are found as 
outlined in Section 4.2. The properties at the center 

for successive times can be found in identically the 

same manner. 

4.5 Startinq Conditions For Perfect Gas 

Due to the uniform density distribution at -ime 

t = 0, the density gradient is infinite at radius r = 1, 

and a numerical determination of the properties at a 

sequent time cannot be obtained. 

the numerical solution of the gaseous expansion, 

starting conditions at a time t = A 
The flow is assumed to be one-dimensional for this 

time increment, and the kt and \r characteristic 

equations (Eq. 3.1 to 3.4) are utilized. 

sub- 

In order to carry out 

the 

must be evaluated. 

small 



L: 

A3 : 

For 

t 

4 .24  

4.25 

4 .26  

4 .27  

Fig, 4.4 

Integrating along the 1, characteristic which 

passes through &he point P ( F i q .  4.'4) 



0 

j d L L -  = 
0 

- 13 = 
aD -2 ( da/ 

I 
8- I 

2 ('-a) 
a= I 

Along the characteristic through P 
/ A  

Combining Eqs. 4.28 and 4.29 

4.28 

4.29 

4.30 

4.31 

The distributions of Lb and a as functions of r 

using E q s .  4.30 can be obtained at the starting time 

and 4.31. 

continued as in Section 4.2. 

A 
The finite difference solution can then be 

It can be seen that the boundary conditions at 

both the escape front and the expansion front are satis- 

fied. At the escape front 

-C = I .t D ~ A  
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si- 

The boundary condit ions a t  the escape f r o n t  are 

therefore both s a t i s f i e d .  

A t  t h e  expansion f r o n t ,  r = 1 - A 

The boundary condit ions are therefore  s a t i s f i e d  

a t  t h e  expansion f r o n t  as well. 
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5. SIMILARITY SOLUTION FOR PERFECT GAS WITH UNIFORM 

INITIAL DENSITY DISTRIBUTION 

5.1. Basic Relations 

It is desired to obtain a similarity solution 

for the long-term expansion of a gas with an initially 

uniform density distribution Following the analysis of 

Ref. 4 ,  the equations of mass and momentum conservation 

(Eqs. 2.1 and 2.2) can be written using the isentropic 

relation (Eq. 2.6) as 

5 . 1  

5.2 

The pressure gradient term in the momentum equation 

(the last term of Eq. 5.2) becomes negligable after long 

time and Eq. 5.2 can then be integrated to yield 

5 . 3  

Substitution of Eq. 5.3 into Eq. 5 .1  shows that 

the density distribution must have the form 

5.4 
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The precise form of t h i s  f u n c t i o n  depends on 

t h e  ear l ier  motion of the gas cloud. The motion i s  , 

s e l f - s i m i l a r  ( a f t e r  long t i m e s )  s i n c e  bo th  Lk and 

T 
t 

a r e  f u n c t i o n s  onll- of - . 

5.2 Sel , f -Similar  Flows 

Looking a t  an  expansion flow which is  s e l f -  

s i m i l a r  a t  a l l  t i m e s ,  l e t  us  assume that  R ( t )  i s  t h e  

l e a d i n g  edge of the gas  cloud which i s  expandhg  i n t o  

vacuum. The gas i s  contained i n  t h e  r eg ion  

A s i m l a r i t y  v a r i a b l e  is  def ined  as 

@ 4 X & R ( t ) .  

5.5 

so t h a t  t he  l ead ing  edge of the gas  c loud corresponds t o  

c)l =1. 
t h e  forms of t h e  dependent v a r i a b l e s .  

S e l f - s i m i l a r  s o l u t i o n s  are found by assuming 

5.6 

5.7 

S u b s t i t u t i n g  E q s .  5.6 and 5.7 i n t o  Eqs. 5.1 and 5.2 

( n e g l e c t i n g  t h e  p r e s s u r e  g r a d i e n t  t e r m  of Eq. 5.2) and 
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f i n d i n g  the  forms of g ( t )  and h ( t )  such t h a t  t h e  r e s u l t i n g  

equat ions are  independent of t ,  one o b t a i n s  

I 

5.8 

5.9 

This  s o l u t i o n  sa t i s f ies  t h e  fo l lowing  bounda.ry condi t ions :  

t = o  R =  1 d R  0 

t = o  T =  0 q =  1 

t 2 0  l = l  .Q = o  

dt 

5.11 

Thus i n i t i a l l y  ( r  = 0) , u = 0 and 

t o  0 a t  R = r. 

v a r i e s  from 1 a t  r = 0 

The l o c a t i o n  of t h e  l ead ing  edge of t h e  expans- 

i o n  can be found by i n t e g r a t i n g  Eq. 5.10 
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A f t e r  long t i m e  , R << 1, so t h a t  

B q .  5.12 may be w r i t t e n  

R 

i e  I - 2 t  e = -  Q+ $'& If- I 
5.13 

The v e l o c i t y  and d e n s i t y  d i s t r i b u t i o n s  can now be found 

from Eq. 5.3 and 5.9 as 
, 

t 
5.15 

These r e s u l t s  a r e  i n  a.greement wi th  Eqs. 5.3 and 

5.4. 

5.3 Approximate A s s y m p t o - t i c  S o l u t i o n  For I n i t i a l l y  

Uniform Density 

Equation 5.14 suggests  t h a t  a su i tab le  form 

f o r  t h e  d e n s i t y  d i s t r i b u t i o n  as t - f o r  an i n i t i a l l y  

uniform gas cloud i s  

5.16 
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^z = RLt)' where D and B are constants and 

Since the g a s  cloud is initially uniform 

5-17 

The constants B and D can be determined from the conser- 

vation of mass and energy of the expanding cloud. 

5.18 

5.19 

E q .  5 . 1 8  equa.tes the mass at t = 0 to the mass at t ---t 

and Eq. 5.19 equates the internal energy at t = 0 to 

the kinetic energy at t - 00 (the internal energy 0 

as t- OC, ) .  Substituting E q s .  5.16 and 5.17 into 

E q s .  5 .18  and 5 . 1 9  with & =  yields 
t 

5.20 

5.21 
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Thus Eqs. 5.15 ,  5 .16 ,  5 .20  and 5 .21  y i e l d  a s o l u t i e n  for 

the expansion of an i n i t i a l l y  uniform gas  cloud which 

assymptmtically approachee t h e  exact s o l u t i o n  as t-u- 
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6. F I N I T E  DIFFERENCE SOLUTION OF REAL GAS EXPANSION 

6.1 Basic Equations 

The finite difference method of solution of a 

gas expanding into a vakuum is developed in order to be 

able to handle problems in which the equation of state is 

not of the perfect gas form. The equations of conservation 

of mass and momentum are written as in Section 2.1: 

6.1 

6.2 

6.2 Equations of State 

The equations of state used for the non-perfect 
5 

gas solution are those empirically determined by Tillotson . 

for compressed states, where a, 12, A and are constants 

for a given metal, and 
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For t h e  expansion of a shocked m e t a l  a t  l o w  

( 9/40 < 1) t h e  m a t e r i a l  behaves as a gas  d e n s i t i e s  

a t  t h e s e  low d e n s i t i e s  i f  t h e  i n t e r n a l  energy E i s  g r e a t e r  

t h a n  t h e  energy a t  which condensation begins .  The 

behaviour  is desc r ibed  by: 

g 

- 
where a ,  b ,  and A a r e  t h e  same cons t an t s  a s  in Eq. 6 . 3  

and o( 

considered.  For very l o w  d e n s i t i e s  (and i f  E i s  s t i l l  

a n d b  a r e  t w o  a d d i t i o n a l  c o n s t a n t s  f o r  t h e  metal  
- 

- 
g r e a t e r  t han  Eg), (@- 17 >> f , and Eq. 6.4 reduces t o  

t h e  p e r f e c t  gas  r e l a c i o n  

6.5 

- 
If t h e  i n t e r n a l  energy E drops b e i o w  t h e  c r i t i c a l  va lue  
- 
Eg, t h e  material i s  assumed t o  p a r t i a l l y  condense and 

t h e  condensed equat ion  of state (Eq, 6 . 3 )  i s  used. 

6 . 3  C a l c u l a t i o n  Of The Shocked M e t a l  S t a t e  

The Hugoniot r e l a t i o n  acroBs t h e  shoc?c i s  

w r i t t e n  a s :  

6.6 
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The condensed e q u a t i o n  of s t a t e  (Eq. 6.3) and t h e  Hugoniot 

r e l a t i o n  ( E q .  G.G) can both  be expressed i n  t h e  f o r m :  

6.7 

6.3 

Once t h e  shoc?: s t r e n g t h  is s p e c i f i e d  (by t h e  d e n s i t y  r a t i o  

) , E q s .  6 . 7  and 6 .7  can he so lved  by Kewton - Raphson B 
i t e r a t i o n  t o  y i e l d  t h e  shocked s t a t e  p r e s s u r e  and i n t e r -  

n a l  energy. 

6.4 Isentropic Expansion of Shocked S t a t e  

The i s e n t r o p i c  r e l a t i o n  ( E q .  2 .5 )  i s  now used 

t o  o b t a i n  t h e  i s e n t r o p e  f o r  t h e  expansion process .  

6.9 

- - 
If t h e  p r o p e r t i e s  behind t h e  shock a r e  known ( ys ,? 4 1  E, ) 

and a, small increment - dq 
w r i t t e n  i n  f i n i t e  d i f f e r e n c e  f o r m  

i s  taken,  Eq. 6.9  can be 

6.10 
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. 

- e 

where Ip, is the average value of f3 over the interval 
.I 

and 

I n  general, between points and ( h +  l), assuming 

i s  the average value of Q over the interv.al. 

tha t  t he  s t a t e  is  known a t  ?L , 

6.11 

2 
- 

i s  obtained from 
-he I A second approximation for  E 

6.12 

- - ( f i r s t  approximation) 
%+I 

can now be determined from E,,+, 
I 

and ?,,+, using the equation of s t a t e  appropriate t o  the 

6.13 

6.14 

6.15 

- 
is calculated from the equation 

Jphti - A new value of 

of s t a t e  appropriate t o  the  value of - 
1; Eq. 6.4 if yn+,/.fo < 1). A n y  desired 

number of approximat,ions may be taken by going back t o  



- 30 - 
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ha.s t h e  r e l a t i o n s  6.13, 6.14 and 6.15. As soon a s  E,+, 

reached a value equal  t o  or less than  E g ( t h e  c r i t i c a l  

energy f o r  condensa,tion t o  b e g i n ) ,  Eq.  6 .4  i s  used a s  tlie 

equat ion  of s t a t e .  

I f  t h e  i n i t i a l  shock s t r e n g t h  i s  g r e a t  enough, 

t h e  p e r f e c t  gas r e l a t i o n  (Eq.  6.5) adequate ly  d e s c r i b e s  

tlie expanded s t a t e  a t  l o w  d e n s i t y  b e f o r e  t h e  i n t e r n a l  

energy E i s  reached t h e  c r i t i ca l  v a l u e s  E g l  and t h e  cond- 

ensed. equat ion of s t a t e  (Eq. 6.3) is n o t  used. This 

- 

c r i t i ca l  value of d e n s i t y  is talcen such t h a t  t h e  exponent 

i n  Eq.  6.4 becomes 

6.16 
c 

ie, - -4. 
I +  E 

- 
i s  reached b e f o r e  E i s  less 46 I f  t h i s  value of d e n s i t y  

than  Eq. 6.5 becomes the equat ion  of s t a t e  of t h e  

me ta l ,  and t h e  r e l a t i o n  

9 ’  

c 

6.17 
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.I 

The values of Ip and f are retained at 
--.I 

each value of 1) used to calculate the isentrope, and 

the isentrope is curve-fitted with a sixth-degree poly- 

nomial in the non-dimensional form 

The speed of so-nd at each point on tlie isentrope 

F q is found by calculating the slope of the 

isentrope between the two adjacent points. 

6.19 

6.20 

The speed of sound is also curve fitted with a sixth- 

degree polynomial in the non-dimensional form 

In the event that Eq. 6.17 is used to describe 

part of the isentrope, the curve fits are used only over 

the range Q f 6 and tlie perfect gas relations 

are used over the range 0 E TG . 
- - 
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6.5 Boundary Conditions 

The hounda.ry conditions at the expansion a.nd the 

esca.pe fronts are: 

Expansion Front: 

where 

0% = 1  

Escape F r o n t :  

6.22 

6.23 
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7- - 1  
For a sufficiently strongly shocked metal, 

but it is possible that the pressure of the metal becomes 

negative (ie. metal fails in tension) so that the pressure 

becomes zero at a finite density particular to the cal- 

culated isentrope. 

6.6 Startinq Conditions For Non-Perfect Gas 

As in the case of the perfect gas (Section 4 . 5 ) ,  

the starting conditions are found by integration along a 1, 
and characteristic. 

Along 

ie. - An- Q, 6.24 
A 
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ie. 

i )  I 
I 

From Eqs. 6.24 a.nd 6.25 

6.25 

A, 6.26 

I n  o rde r  t o  o b t a i n  t h e  s t a r t i n g  d i s t r i b u t i o n s  of a.nd 

u a t  t = A , t h e  i n t e g r  a1 i n  Eq. 6.26 i s  eva lua ted  f o r  

Q. a number of va lues  of  

6.27 

Eq 

I 
f 

Carry ing  out. t h e  i n t e g r a t i o n  of Eq. 6.27 w i t h  

6.21 

- 
can be T- I 

A i s  known (Eq, 6.211, - CL Since  a = - 
evalua ted  f o r  any va lue  of 

a', 
9 ( @  G Q 6 1). 

I n  t h e  even t  t h a t  Eq. 6.17 p a r t l y  describes the  

i s e n t r o p i c  expansion of t h e  gas, Eq.  6.2' i s  used o n l y  

ove r  the  ra.nge 
U .I .I 

fG & 7 6 ys , and the  p e r f e c t  gas  
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r e l a t i o n  (Eq. 6.17) i s  used over 

The dens i ty  can now be 

L - 
YG 

t h e  range 0 4 9 " -  
expressed i n  t h e  form 

and u can be eva lua ted  f r o m  Eqs. 6.23 and 6.28, 

A t  the expansion f r o n t ,  r = 1 - A and & = 1  
Prom Eq. 6.26 

= 1  

and from Eq. 6.25 

k q  = o  

A t  the escape f r o n t  r = 1 + u f t  

1 

From Eq. 6.26 

QAS = o 

From Eq, 6.25 
k 'f ('"B z 4 4  

?a 
The s t a r t i n g  conditione (Eqs. 6.25 and 6.26) 

t hus  s a t i s f y  the boundary condi t ions (Eqs. 6.22 and 6.23) 

a t  both t h e  expansion and t h e  escape f r o n t s .  

6.7 Continuat ion of Solut ion 

The s o l u t i o n  for t i m e  g r e a t e r  than  A i s  

carried on i n  t h e  8ame manner a s  f o r  t h e  perfect gas  
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(Sect ion 4.2) except t h a t  t h e  f i n i t e  d i f f e r e n c e  equa t ions  

a r e  w r i t t e n  i n  t h e  v a r i a b l e s  f and u. 

From E q s .  2 .10  and 2 . 1 1  

6-30 

6.31 

The numerical de r iva . t i ves  are: 

6.33 

Using Eqs. 6.30 t o  6.35, t h e  s o l u t i o n  may be c a r r i e d  o u t  

i d e n t i c a l l y  a s  i n  Sec t ion  4.2. 

ar ises  when t h e  c e n t e r  i s  reached. 

A s l i g h t  d i f f e r e n c e  
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I 

Fig. 6.2 

A t  t h e  center 

, ~ ( A c , t )  = - A ( - A T  I t) 

- 4 h - C  t) I - 
A-i  

6.36 

6.37 

6. 38 

6. 39 

The t e r m  3 i n  Eq. 6.30 has a l i m i t  a t  r=O. 

Refe r ing  t o  Fig. 6.2 
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The procedure i s  then basically t h e  same as i n  Section 4,2.  
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7. DETAILED NUMERICAL PROCEDURES 

7.1 Solution By Method of Characteristics 

The origin of the expansion is assumed to be 

at the point (1,O) in the r,t diagram (Fig. 7.1). 

t 

Fig. 7.1 

The r,t plane can be divided into four distinct regions, 

the region of undisturbed gas (Region 1) the centered 

wave region (Region 2), the reflected wave region (Region 3)  

and the vacuum ahead of the escape front (Region 4 ) .  The 

conditions at the fronts proceeding into regions 1 and 4 

are known: 

‘44, = 0 1 
7.1 
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.u, = k e s  

04. = 0 

a )  S t a r t i n g  t h e  So lu t ion  

I n  o r d e r  t o  begin  t h e  s o l u t i o n ,  cons ide r  a 

cen te red  expansion a t  r = 1, t = 0. 

Co-ordinates i n  t h e  

F ig .  7.2 

7.2 

- -  . t p lane  are now r e f e r r e d  t o  as 

where the  s u b s c r i p t s  i and j ta-;e 

va.lues a,s ind ica . ted  i n  Fig.  7.2. The properties a . t  t h e  

head of t h e  r a . r e fac t ion  fa.n are known: 

A(!,!) = D 

a ( I , { )  I 
'7 . 3 
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Taking r(1, 1) = 0 . 9 9 ,  

7.4 

and assuming one-dimensional flow from the origii of 

the expansion to the characteristic line j = 1, the 

velocity u(2,l) is determined from Eq, 3.2 in finite 

dif f ereiice form 

where the subscript (1 + 1/2, 1) denotes the average 

value of a property between (1, 1) and (2, i), 

7.5 

7.6 

7.7 

Both (2, 1) and a(2, 1) are determined from tile isen- 

tropic relations (Eq. 3.5 and 3.6), since P(2 , l )  is mown. 

The propagation velocity of the right-running wave is 

] 7.8 
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The propagat ion v e l o c i t y  of t h e  l e f t - r u n n i n g  wave i s  

(from E q .  3 . 3 ) .  

7.9 

The i n t e r s e c t i o n  p o i n t  of t h e  two waves i n  t h e  r ,  t p lane  

i s  found by w r i t i n g  E q s .  3 .1  and 3.3 i n  f i n i t e  d i f f e r e n c e  

7.ii I E q s .  7 . 1 0  a r e  so lved  to y i e l d :  

CQ [ t (2  - ‘k (1 ,I) 

The i n t e r s e c t i o n  p o i n t  r ( 2 ,  1) , t ( 2 ,  1) i s  t h u s  determined. 

To determine t h e  rernainiracj p o i n t s  aloilcj t h e  l i n e  j -- 1, 

t h e  general  r e l a t i o n s  a r e :  

a ( i ,  1) and Y ( i ,  1) a r e  found f r o m  E q s .  3 .5  and 3.5. 



. 
- 43 - 

7.13 

The i n t e r s e c t i o n  p o i n t  r(i, l ) ,  t ( i ,  1) i s  g iven  by: 

a.nd C‘ = 

b) S o l u t i o n  i n  Centered Wave Reqion 

t 

7.15 

7.16 

Fig.  7.3a Fig.  7.3b 
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The p o i n t  (1, j )  i s  t o  be determined from t h e  known prop- 

e r t ies  a t  the p o i n t s  ( i  - I, j )  and ( 1 ,  j - 1) i n  Fig.  7.3a. 

Assuming t h a t  t h e  g r i d  p o i n t s  a r e  s u f f i c i e n t l y  

close toge ther  t h a t  t h e  dependeiit v a r i a b l e s  va ry  l i n e a r l y  

between adjacent  po in t s .  Eqs. 3.1 t o  3.4 may be w r i t t e n  

i n  f i n i t e  d i f f e r e n c e  forms (Eqs. 3.7 to 3.10) .  

Since t h e  va lues  of t h e  p r o p e r t i e s  a t  p o i n t s  A 

and B (Fig.  7.3b) a r e  cnown, one may w r i t e  a s  a f i r s t  

appro,: ima t ion : 

- 4 4  + a, 1 
I 

Values f o r  t r u a n d p  can now be determined from 

Eqs. 3.11 to  3-14 ,  and both  y p  and a p  a r e  found from 

Eqs. 3.5  acd  3.6. 

P’  P‘  P T 
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A second approximation fo r  the properties at 

point P is found using the first calculated values at P, 

and putting: 

7.18 

These values are now pct into E q s .  3.11 to 3.14, 

more accurate values for the properties at point 

and 

p are 

calculated. Any point in the centered wave region can 

be determined in this way provided that the previous point 

on both the right - and left-running characteristic 
lines are known. 
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c )  Treatment A t  The Center 

t 

I n  o rde r  t o  avoid t h e  s i n g u l a r i t y  of t h e  t e r m  

i n  Eqs. 3,2 and 3.4,, a s l e n d e r  rod  of 0.0001 t i m e s  

t h e  ra.dius of t,lie o r i g i n  of the expansion i s  p laced  i n  t h e  

flow f i e l d ,  P o i n t s  a r e  now subsc r ip t ed  r ( I ,  II), t ( I I  11). 

A t  t h e  c e n t e r  p o i n t  (1, 19 i n  Fig.  7 . 4 ,  

7.19 
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a(i ,r> = 1 

The p o i n t s  (2, l ) ,  (3, 1) .... .etc6 are found as o u t l i n e d  

i n  Sec t ion  7.l.b. 

The f i r s t  approximation for t h e  p o i n t  (2, 2 )  i n  

Fig. 7.4 i s  found as follows: 

Using Eqs. 3.9, 3.10 and 7.20, and t h e  cond i t ions  t h a t  

4 7 2 )  = * 
+2) * (3,0001 

7.21 
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0 ( 2 ,  2 )  a n d  a ( 2 ,  2 )  a r e  f o u n d  f r o m  t h e  isentropic  

r e l a t i o n s  (Eqs, 3 .5  a n d  3 . 6 )  

T h e  s e c o n d  a p p r o x i m a t i o n  i s  t a k e n  a s :  

A g a i n  

u ( 2 ,  2 )  = 0, 

r ( 2 ,  2 )  = 0 .0001  

Kew v a l u e s  a r e  c a l c u l a t e d  for t ( 2 , 2 )  a n d  p ( 2 , 2 )  u s i n g  E q s .  

7 . 2 4 ,  3.9 and 3.10. The p r o c e d u r e  of S e c t i o n  7 . 1 , b  is 
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followed to obtain points (3.2) , ( 4 , 2 ) .  . . etc. 
The properties at point ( 3 , 3 )  are found from 

those at point (3,2) in the same manner that the properties 

at (2,2) were determined from those at (2,l). The entire 

flow field of the reflected wave region can therefore be 

determined. 

7.2 Numerical Procedure in Finite Difference Method 

The basic procedure for the numerical solution 

of the expansion problem has been outlined in Sections 

4.1 to 4.4. In this section,the method of construction 

of the grid is outlined and additional numerical inter- 

polation formulae are introduced for use when the expan- 

sion or escape fronts do not pass through a grid point. 

a) Construction of Grid 

The velocities of both the expansion and the 

escape fronts are known. For a perfect gas 

2 

For a non-perfect gas 

hf ( ’  4 
?Q5 P 

I 7.1 

7.2 
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The increment A r i s  chosen such t h a t  t h e r e  a r e  501 g r i d  

p o i n t s  when t h e  expansion k o n t  h a s  reached t h e  c e n t e r  ( t  = -I-). 

t 

1 

Fig.  7.5 

T h i s  cond i t ion  i s  expressed  by 

7.3 

A s t a r t i n g  t i m e  A must now he chosen 

Fig,  7 .6  

Refe r r ing  t o  Fig.  7 .6  , A i s  chosen such t h a t  
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L = 5AT 7.4 

Since = 1, it can be seen that A = 5 A r  is the 

appropriate starting time for the solution. The right 

hand extremity of the grid is defined by: 

“r, = i + J q b  

and the left hand extremity by 

7.5 

7.6 

The points on the grid between r = r and r = rex are 

defined by: 

es 

A condition for the stability of the solution 

by the finite difference method is that - > greatest 
b t  

velocity in the system. In practice, it was found that a 

ratio E of 4 yielded good results, and this ratio 

was used. 
At 

A< 
4 A t  = - 7-0 
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The t i m e  increment A t  i s  now de f ined ,  and t h e  g r i d  can 

be drawn f o r  t i m e s  g r e a t e r  than  t h e  s t a r t i n g  t i m e  4 . 
The t w o  boundary cond i t ions  which are maintained are: 

&A = I - t  7 . 9  

7.10 

The g r i d  s i ze  and l o c a t i o n  i s  maintained u n t i l  t h e  s o l u t i o n  

has  reached t i m e  t = 1, and p o i n t s  a r e  added t o  the g r i d  

where necessary u n t i l  t h e  number of p o i n t s  i s  501 a t  t = 1. 

Several  a d d i t i o n a l  i n t e r p o l a t i o n  techniques must 

be used so t h a t  t h e  s o l u t i o n  can be ob ta ined  when t h e  

expansion o r  escape f r o n t s  do no t  pass through a g r i d  

po in t .  I n  a l l  c a s e s ,  t h e  boundary cond i t ions  a t  bo th  

f r o n t s  a r e  known. 

bl Solu t ion  Nea.r Escape Fron t  

Fig.  7 .7  
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The properties at points 1 to 4 have been 

determined, and it is desired to obtain the solution for 

points 5 to 9 at the next time t = t + A t (Fig. 7,7), 
Points 5, G and 7 can be obtained by the method 

of Section 4.2 knowing the properties at points 1 to 4, 

The distance between points 7 and 3 is Ar, 

and that between points 3 and 9 is B A r .  The properties 

at point 9 are known from the boundary conditions at the 

escape front, and the properties at 8 are determined by 

interpolation. 

7.11 

I+ P 

4 Solution Eear Expansion Front 

1 on 

Fig, 7.8 
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If the situation in Fig. 7.9 arises, the propert- 

ies at t = t + A -t are found as follows: 
The properties at points 1 to 4 are known, and those at 

pQint 5 are ?mown from the boundary conditions at the 

expansion front. The properties at points 7, $....can 

be found from those at points 2, 3, 4. ... a s  outlined 

in Section 4.2. 

If the distance between points 1 and 2 is 

and that between points 2 and 3 is Ar, one may write: 

Equations 7.12 to 7.15 , along- with Eqs. 4.3 and 4.4 , ca.n 

be used to find the properties at point 5 .  

Fig. 7.9 
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I f  t h e  wave i n t e r s e c t i o n  wi th  the g r i d  occurs  

as i n  Fig.  7.9,  t h e  fol lowing technique i s  used: 

P o i n t s  9 ,  10. . . etc. are determined from p o i n t s  2 ,  3, 4, 

5.. .etc. as i n  Sec t ion  4.2. The properties a t  p o i n t  2 are 

found from those a t  1, 2 ,  and 3 as o u t l i n e d  i n  t h i s  sect- 

i o n  above. The properties a t  p o i n t  6 a r e  known from t h e  

boundary condi t ions  a t  the expansion f r o n t ,  and t h e  

properties a t  p o i n t  7 are: 

i 

7.16 

d) Cont inua t ion  of Solu t ion  Beyond t = 1 

Once the t i m e  t = 1 has been reached,  the g r i d  

s i z e  i s  doubled (both Q r and 4 t are doubled) and t h e  

number of p o i n t s  i s  reduced to 251. 

Fig. 7.10 
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Points 3, 9, 10.. . and point 16 (in Fig. 7.10) are found 
as in Section 4.2. The bocndary condition at 13 is 

known, and the properties at 17 are found from those at 

16 and 12. The point 7 is then determined by the method 

outlined in Section 4.4. The solution for the flow can 

thus be obtained for the time beyond t = 1. 
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8. RESULTS AND DISCUSSION 

3.  i F i n i t e  Di f fe rence  Solu t ion  For C y l i n d r i c a l  Expans- 

i o n  of P e r f e c t  G a s  W i t h  1.4 

The escape f r o n t  v e l o c i t y  of a p e r f e c t  gas  i s  

g iven  by Eq. 4.12  and it i s  seen  t h a t  f o r  such a gas 

w i t h  a specific h e a t  r a t i o  of 1.4, t h e  escape  f r o n t  

v e l o c i t y  i s  f ive  t i m e s  the expansion f rQn t  v e l o c i t y .  

Tne speed of sound prof i les  a t  t i m e s  t = 0,  

0.5,  1 .0  and 2 . 0  a r e  g iven  i n  Fig. 8.1. I t  i s  seen  t h a t  

a t  t i m e  t = 0.5, t h e  speed of sound d i s t r i b u t i o n  is 

a l m o s t  a l i n e a r  one,  comparing c l o s e l y  t o  t h e  d i s t r i b u t -  

ion f o r  t he  corresponding d i s t r i b u t i o n  fo r  t h e  p l a n e  ca.se 

(see S e c t i o n  8.2). T h e  term i n  t h e  c o n t i n u i t y  equa t ion  

(Eq. 4.1)  w h i c h  causes  t h e  depar ture  from l i n e a r i t y  i n  

t h e  c y i i n d r i c a l  expansion i s  .( act/ ( f o r  t h e  c y l i n d r i c a l  

c a s e ,  r = l), b u t  a t  t h i s  r e l a t i v e l y  s h o r t  t i m e  from 

t h e  i n i t i a t i o n  of t h e  expansion, t h e  expansion f r o n t  h a s  

f 

*=? 

I 

advanced on ly  t o  h a l f  t h e  o r i g i n a l  r a d i u s  and t h i s  t e r m  

i s  s m a l l .  The escape f r o n t  v e l o c i t y ,  a s  po in t ed  o u t  

above, i s  f i v e  t i m e s  t h a t  of the  expansion f r o n t ,  and 

t h i s  f r o n t  has  proceeded o u t  t o  a r a d i u s  of 3.5, *ere 

t h e  boundary cond i t ion  of a = 0 a p p l i e s .  

t h e  head of the  expansion wave has  reached t h e  c e n t e r  and 

A t  t = 1 . 0 ,  
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t h e  f l u i d  s t a t e s  a t  r = 0 begin  t o  decay. The escape 

f r o n t  p o s i t i o n  i s  now r = 6 ,  where t h e  boundary cond i t ion  

( a  = 0)  app l i e s .  The Eon- l inea r i ty  of t h e  speed of 

sound d i s t r i b u t i o n  i s  now more apparent  due t o  t h e  in-  

c r eased  e f f e c t  of t h e  t e r m  . A t  t = 2 ,  t h e  ex- 

pansicm f r o n t  has  been r e f l e c t e d  from t h e  c e n t e r  (of 

the c y l i n d e r ) ,  and has  caused a f u r t h e r  decay i n  t h e  

speed of sound t o  t h e  r a d i u s  t o  which t h e  r e f l e c t i o n  has  

p e n e t r a t e d  (approximately 2 .0 ) .  The speed of sound i s  

approximately cons t an t  ( a  = .625) from t h e  c e n t e r  t o  

r = 1.5.  

The corresponding d e n s i t y  prof i l e s  f o r  t h e  cyl-  

i n d r i c a l  expansion a t  t i m e s  t = 0 ,  0.5,  1.0 and 2.0 a r e  

shown i n  Fig. 8 .2 .  

t han  t h e  speed of sound decay, s i n c e  from t h e  i s e n t r o p i c  

r e l a t i o n s  ( E q s .  2.6 and 2 . 7 ) ,  it can be seen t h a t  t h e  

de i i s i ty  v a r i e s  a s  t h e  speed of sound r a i s e d  t o  t h e  power 

The decay i n  d e n s i t y  i s  more r a p i d  

, or 5 fo r  t h e  case  of a s p e c i f i c  h e a t  r a t i o  of 
2 - 

8-  9 
1 . 4 .  The dens i ty  v a r i a t i o n  i s  o therwise  analogous t o  

t h e  speed of sound v a r i a t i o n .  

The veloci-ky d i s t r i b u t i o p s  a t  t ixes  t ~ o .  5 ,  1 . 0  and 2 . 0  

a r e  p l o t t e d  i n  Fig.  8 . 3 ,  A t  t = . 5 ,  t h e  d i s t r i b u t i o n  i s  

approximately l i n e a r ,  vary ing  from 0 a t  r = .5  (boundary 

c o n d i t i o n  a t  t h e  expansion f r o n t )  t o  5 a t  r = 3.5 (bound- 

a r y  condi t ion  a t  the escape f r o n t ) .  Again, a s  i n  t h e  
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c a s e  of t h e  speed of sound d i s t r i b u t i o n ,  t h e  v e l o c i t y  

p r o f i l e  becomes i n c r e a s i n g l y  non-l inear  as t i m e  i n c r e a s e s ,  

w i t h  t h e  b u n d a r y  cond i t ions  of zero v e l o c i t y  a t  t h e  

c e n t e r ,  and a v e l o c i t y  of 5 a t  t h e  escape f r o n t  maintained. 

8.2,  Comparison of F i n i t e  Difference So lu t ions  of P lane ,  

C y l i n d r k a l  and Spher ica l  Expansions f o r  P e r f e c t  

G a s  Wi th  = 1.4 

The speed of sound d i s t r i b u t i o n  a t  tiirte t = 0.5 

f o r  t h e  p l ane  expansion is shown i n  Fig.  8.4,  and it is  

seen  t o  be a l i n e a r  d i s t r i b u t i o n  from a = 1 a t  r = 0.5 

t o  a = 0 a t  r = 3.5, the two boundary cond i t ions  which are 

imposed. 

method is t h e r e f o r e  i d e n t i c a l  t o  t h e  c losed  form of t h e  

solution which can be obtained f o r  a p l a n e  expansion. 

R e s u l t s  a t  greater t i m e s  i n d i c a t e  t h a t  the f i n i t e  d i f f e r -  

The s o l u t i o n  obta ined  by t h e  f i n i t e  d i f f e r e n c e  

ence s o l u t i o n  i s  correct for t h e  p l a n e  case f o r  t i m e s  

g r e a t e r  t h a n  t = 0.5. 

A comparison of t h e  r e s u l t s  f o r  the p l a n e ,  cy l -  

i n d r i c a l  and s p h e r i c a l  expansions f o r  t = 0.5 is shown i n  

Fig.  8.5. The boundary condi t ions  a r e  s a t i s f i e d  i n  each 

c a s e  a t  r = 0.5 and r = 3.5. The d i s t r i b u t i o n  f o r  t h e  

p l a n e  case i s  l i n e a r  as i n  F i g .  8.4  above. There i s  a 

s l i g h t  n o n - l i n e a r i t y  f o r  t h e  c y l i n d r i c a l  s o l u t i o n ,  w i t h  
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t h e  decay being more r a p i d  due t o  t h e  t e r m  2 9 2  

' T  
t h e  c o n t i n u i t y  equat ion  (Eq.  4 . 1 ) .  For t h e  s p h e r i c a l  ca se  , 
t h i s  e f f e c t  i s  m o s t  pronounced and t h e  g r e a t e s t  d e p a r t u r e  

from l i n e a r i t y  i s  seen  here.  A t  t i m e  t = 1, t h e  p l a n e  

c y l i n d r i c a l  and s p h e r i c a l  s o l u t i o n s  are aga in  compared 

(Fig.  9.6) ,  and t h e  s a m e  q u a l i t a t i v e  behaviour  i s  noted 

a s  i n  Fig.  8.5. I t  i s  seen  t h a t  t h e  speed of sound 

g r a d i e n t  

near  r = 0 than  i t  i s  f o r  t h e  c y l i n c r i c a l  or p l a n e  sol- 

u t ions .  

i n  

& i s  g r e a t e r  f o r  t h e  s p h e r i c a l  ca se  w 

A comparison of t h e  speed of sound d i s t r i b u t i o n s  

f o r  the plane and c y l i n d r i c a l  expansion a t  t = 1 . 5  i s  

shown i n  Fig. 5.7. For t h e  p l ane  c a s e ,  the va lue  of a 

a t  t h e  cen te r  i s  0.879, and f o r  t h e  c y l i n d r i c a l  case, 

t h e  va lue  is  0.733. The more r a p i d  decay a t  t h e  c e n t e r  

f o r  the c y l i n d r i c a l  ca se  i s  due t o  t h e  sha rpe r  g r a d i e n t  

c I1 

of "a" ( $$ ) near  t h e  c e n t e r ,  and t h e  e f f e c t  of t h e  

G 2  on t h e  t i m e  d e r i v a t i v e  da (Eq.  4 . 3 ) .  at 
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3.3. Comparison of Cyl indr ica l  Expansions of P e r f e c t  

G a s e s  With 8 = 3.0 and \r = 1.4  

I t  has  been noted t h a t  a p e r f e c t  gas  d e s c r i p t i o n  

of m e t a l  states has  served to  p r e d i c t  t h e  behaviour of t h e  

expansion prooess. Using the approximation of the l i m i t -  

i n g  dens i ty  ratio of a strong shock. 

8 +  1 G =  0.1 

For a shock s t r e n g t h  r= 2, t he  e f f e c t i v e  i s  3.0. 

The p e r f e c t  gas d l u t i o n  f o r  

l a t e r  comparison to the real gas s o l u t i o n  f o r  

= 3.0 is  now obta ined  f o r  

(3' = 2 . ~ .  

The speed of aound and v e l o c i t y  d i s t r i b u t i o n s  

as f u n c t i o n s  of E a t  t = 0.5 f o r  t h e  c y l i n d r i c a l  case 

s h n  i n  Figs. 3.8 and 8.9, For t h e  p e r f e c t  gas wi th  

8 = 3.0, t h e  escape f r o n t  v e l o c i t y  i s  1, t h e  s a m e  as 

t h e  expansion f r o n t  velocity. The boundary cond i t ion  (a = 0) 

a t  the escape f r o n t  occurs  a t  r = 2, as opposed t o  r = 3.5 

for the p e r f e c t  gas w i t h  8 = 1.4.  As a r e s u l t ,  t h e  

g r a d i e n t  of "a" with r e spec t  t o  "r" i s  sharper  f o r  t h i s  

gas  ( $ = 3.0) than €or t h e  gas  wi th  @ = 1.4. The 

corresponding d i s t r i b u t i o n s  for  the gas  with = 1.4 are 

shown i n  Figs .  8 . 3  and 8.9 fo r  comparison and t h e  sharper  

is  apparent for  the case of = 3.0, g r a d i e n t  ( -h- 
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The speed of sound d i s t r i b u t i o n s  f o r  bo th  = 1 . 4  

and '6 = 3 .0  a t  t ime t = 1 . 0  a r e  shown i n  Fig.  8 .10 ,  

and it  i s  aga in  apparent  t h a t  t h e  g r a d i e n t  

g r e a t e r  f o r  '6 = 3.0 than  i t  i s  f o r  @ = 1 . 4 .  The 

e f f e c t  of t h e  sharper  g r a d i e n t  f o r  ?f = 3 .0  becomes 

apparent  when t h e  speed of sound d i s t r i b u t i o n s  a r e  p l o t -  

t e d  a t  t i m e  t = 2 . 0  f o r  t h e  two cases  (Fig.  8.11). Where 

i n  t h e  case of = 1 . 4 ,  t h e  va lue  of "a"  a t  t h e  c e n t e r  

i s  0.625 a t  t = 2.0,  'la" a t  t h e  center i s  0.231 f o r  t h e  

case  of % = 3.0,  a t  t h e  same time. There i s  also a 

s l i g h t  i n c r e a s e  i n  ''a'' from r = 0 t o  r = 0.8. 

8.4 Comparison of C h a r a c t e r i s t i c  So lu t ion  With F i n i t e  

& 
rb.c i s  much 

D i f f e r e n c e  So lu t ion  f o r  C y l i n d r i c a l  Expansion of 

Perfect G a s e s  

In o rde r  t o  check t h e  s o l u t i o n  of t h e  expans- 

i on  of a p e r f e c t  gas  of cons t an t  

f i n i t e  d i f f e r e n c e  method s o l u t i o n  of t h e  same cases  by 

t h e  c h a r a c t e r i s t i c  method (Secs. 3 and 7 . 1 )  was e f f e c t e d .  

8 a s  ob ta ined  by t h e  

For t h e  p e r f e c t  gas  wi th  a s p e c i f i c  h e a t  r a t i o  

of 1 . 4 ,  t h e  speed of sound d i s t r i b u t i o n  a t  t i m e s  t = 0.5, 

1 .0  and 2 .0  a r e  shown i n  Figs .  8-12 t o  8.14. The s o l i d  

l i n e  r ep resen t s  t h e  c h a r a , c t e r i s t i c  s o l u t i o n ,  a.nd t h e  c ros s -  

e s  represent  p o i n t s  ob ta ined  by t h e  f i n i t e  d i f f e r e n c e  

method of s o l u t i o n .  Extremely good agreement i s  noted ,  
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e s p e c i a l l y  f o r  r a d i i  f a r  away from t h e  escape f r o n t .  Near 

t h e  escape f r o n t ,  s l i g h t  discrepancy is  noted f o r  t h e s e  

c a s e s  and the reason  s h a l l  be d i scussed  i n  t h e  next  

s e c t i o n .  

The r e s u l t s  f o r  a p e r f e c t  gas  wi th  8 = 3.0 

are p resen ted  i n  Figs .  8.15 and 8.16. Again, t h e  speed 

of sound d i s t r i b u t i o n s  obtained by t h e  c h a r a c t e r i s t i c  

m t h o d  a t  t i m e s  t = 0.5 and t = 2 .0  are r ep resen ted  by 

t h e  s o l i d  l i n e s ,  and t h e  c rosses  i n d i c a t e  p o i n t s  ob ta ined  

by t h e  f i n i t e  d i f f e r e n c e  method of s o l u t i o n .  H e r e ,  agree- 

ment i s  extremely good, even i n  t h e  r eg ion  near  t h e  

escape  f r o n t .  

8.5. S t a b i l i t y  of t h e  F i n i t e  Di f fe rence  So lu t ion  

The s t a b i l i t y  of t he  f i n i t e  d i f f e r e n c e  method 

of s o l u t i o n  ( i t s  r e s i s t a n c e  t o  o s c i l l a t i o n )  i s  dependent 

upon t h e  g r i d  s i z e  which i s  u t i l i z e d  i n  o b t a i n i n g  t h e  

s o l u t i o n .  A t  t h e  o n s e t  of t h i s  work, it was thought 

t h a t  t h e  u s e  of a g r i d  r a t i o  

was equal  t o  or g r e a t e r  than t h e  m a x i m u m  v e l o c i t y  i n  

E such t h a t  t h i s  r a t io  
h t  

t h e  expansion system w a s  s u f f i c i e n t  t o  ensure  t h e  stab- 

i l i t y  of  t h e  s o l u t i o n  obtained. The f i r s t  r e s u l t s  f o r  

t h e  p e r f e c t  %as with  8 = 3.0 w e r e  ob ta ined  us ing  a 

g r i d  ra t io  h-c 
At 

equal  t o  1 ,  t h e  v e l o c i t y  of t h e  expan- 

s i o n  f r o n t  and t h e  escape f ron t .  The r e s u l t s  ob ta ined  
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a r e  p l o t t e d  a s  c ros ses  i n  F i g .  8 .17.  These r e s u l t s  

c l e a r l y  show t h a t  t h e  s o l u t i o n  i s  u n s t a b l e  f o r  5 
A t  

equal  t o  1. I t  was found, i n  f a c t ,  t h a t  s a t i s f a c t o r y  

r e s u l t s  a r e  obta ined  when I\r i s  equal  t o  4 ,  4 t i m e s  

t h e  g r e a t e s t  v e l o c i t y  i n  t h e  system. This  i n s t a b i l i t y  
A t  

f o r  a small g r i d  r a t i o  i s  due p h y s i c a l l y  t o  t h e  f a c t  

t h a t  l o c a l  d i s tu rbances  i n  t h e  flow propagate  a t  a 

v e l o c i t y  which i s  t h e  sum ( o r  d i f f e r e n c e  f o r  l e f t - r u n -  

ning waves) af the  p a r t i c l e  v e l o c i t y  and t h e  l o c a l  

s o n i c  ve loc i ty .  The s o l u t i o n  cannot t h e r e f o r e  be pro- 

ceeded w i t h  a t  a r a t e  f a s t e r  than  the speed of l o c a l  

d i s turbances  ( i . e .  A t cannot be t o o  l a r g e  f o r  a given 

A r ) .  T h i s  c r i te r ion  accounts f o r  t h e  s m a l l  d i s c rep -  

a n c i e s  between t h e  c h a r a c t e r i s t i c  s o l u t i o n  and t h e  f i n i t e  

d i f f e r e n c e  s o l u t i o n  f o r  t h e  p e r f e c t  gas  wi th  @ = 1 . 4  

near  t h e  escape f r o n t ,  a t r e n d  noted i n  t h e  prev ious  

s e c t i o n ,  (Sec t ion  8 . 4 ,  Fig.  8 . 1 2 ) .  Since a g r i d  r a t i o  

- AT 
At 

of 5 ( t h e  escape f r o n t  v e l o c i t y )  was used i n  

t h i s  s o l u t i o n ,  a s l i g h t  i n s t a b i l i t y  occurs  near  t h e  

escape f r o n t  where t h e  propagat ion v e l o c i t y  of l o c a l  

d i s turbances  i s  comparable t o  t h e  g r i d  r a t i o  used. 

8 . 6 .  S i m i l a r i t y  So lu t ion  f o r  C y l i n d r i c a l  Expansion of 

P e r f e c t  Gas wi th  = 1 . 4  

The s i m i l a r i t y  a n a l y s i s  of Sec t ion  5 was 
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followed to obtain a solution of the expansion for the 

cylindrical case for times greater than 1 in order to 

determine at what time the similarity solution becomes 

a sufficiently accurate discription of the expansion 

process. Values for the constants B and D (Eqs .  5.20 

and 5.21) used for the cylindrical expansion ( :ty = 1.0) of 

the perfect gas ( @ = 1.4) are 

B = 5.0 

D = 0.240 

A comparison of the results obtained by the sim- 

ilarity solution and those obtained by the finite dif- 

ference method (far perfect gas w i t h  3 = 1.4) at 

times t = 2.0, 3.0 and 4.0 are shown in Figs. 8.18 to 

8.20. The values obtained for the speed of sound at 

the center by the similarity assumption and the finite 

difference method respectively are: 

t = 2.0 a = 0.568 by similarity 

a = 0.627 by finite difference 

a = 0.484 by similarity 

a = 0.512 by finite difference 

t = 4.0 a = 0.432 by similarity 

a = 0.447 by finite difference 

The appearance of these curves, and the gradual coalescence 

of the two solutions into one, indicate that for times 

t = 3.0 
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g r e a t e r  than 4 ( g r e a t e r  t han  4 t i m e s  t h e  t i m e  r e q u i r e d  

f o r  t h e  i n i t i a l  expansion wave t o  reach  t h e  c e n t e r ) ,  t h e  

s i m i l a r i t y  assumptions of Sec t ion  5 become s u f f i c i e n t l y  

v a l i d  t o  enable one t o  o b t a i n  an a c c u r a t e  s o l u t i o n  by 

t h i s  simple method. 

8 .7 .  Shocked S t a t e s  of Real Gas (Alwninum) and t h e  

I sen t ropes  Appropriate  t o  Two Shock S t r enq ths  

The equat ion  of s t a t e  cons ta i i t s  (Eq. 6 . 3  and 

6.4) appropr i a t e  t o  t h e  shocked s t a t e s  of a l u m i n u m  a r e :  

a = 0.5 

b = 1.63 

- 1 2  E = 0.05  x 10 dyne cm/3m 

A = 0.752 x 10 dynes/cm 

B = 0.65 x 10l2 dynes/cm 

0 

- 12 2 

2 - 

a = 5 . 0  

@ =  5 . 0  

I - 
, t h e  shocked metal  % with  r e s p e c t  t o  6 Neglect ing 

p r e s s u r e  ( i n  E q .  6 . 6 ) ,  E q s .  6.3 and 6.6 a r e  s imulatneously 

so lved  f o r  a. series of shock s t r e n g t h s ,  (va lues  of ) ,  

and t h e  r e s u l t i n g  shock Hugoniot f o r  aluminum i s  shown 

i n  Fig .  3 . 2 1 .  Two i s e n t r o p e s  a r e  c a l c u l a t e d  and shown 

i n  Fig.  8 . 2 1  as w e i l .  I n  t h e  f i r s t  case, corresponding 

t o  an i n i t i a l  shock s t r e n g t h  Q' of 2 . 0 ,  t h e  p&e& gaseqcat icn 
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3 d 

(Eq, 6.5) becomes v a l i d  a t  the d e n s i t y  

and a pressure ? = 0.009771 Mb, The curve f i t s  

9 = 0.52953 gms/cm - 
€or "p" and "a" as funa t ions  of 'I !  'I have been ob ta ined  

and are v a l i d  i n  the range - 
0.52953 < Q 5.4 

The c o e f f i c i e n t s  ef the power series are given  i n  Table 1. 

The second i sen t rope  c a l c u l a t e d  i s  that cor- 

r e s p n a i n g  t o  an i n i t i a l  shock s t r e n g t h  C of 1 . 7 ,  and 

i s  also shown i n  Fig,  8.21. I n  t h i s  c a s e ,  t h e  i n t e r n a l  

energy of t h e  gas drops below t h e  cr i t ical  energy E9 

a t  which condensat ion begine. 

gms/cm3, and t h e  condensed form of the equa t ion  of state 

T h i s  occurs  a t  7 = 2.594 

(Eq. 6.3) becomes v a l i d  a t  t h i s  va lue  of dens i ty .  The - 
c a l c u l a t i o n  of t h e  i s en t rope  is  cont inued u n t i l  = 0, 

3 a c o n d i t i o n  which occurs  a t  9 = 2.320 gms /cm . The 

i s e n t r o p e  i s  then  curve f i t t e d  m e r  t h e  range 

2.320 6 4 4.59 

The c o e f f i c i e n t s  fo r  t h e  polynomials ob ta ined  f o r  "p" 

and "a" as f u n c t i o n s  of I' I' are g iven  i n  Table 2. 

The c r i t i c a l  d e n s i t y  a t  which t h e  p r e s s u r e  becomes 
Q 

nega t ive  ( i .e.  material i s  i n  t e n s i o n )  i s  de f ined  t o  be 

the y i e l d  p o i n t  of t h e  metal and t h e  p r e s s u r e  and speed 

of sound a t  t h i s  p o i n t  a r e  def ined  t o  be zero,  



- 68 - 

3.8 Solu t ion  f o r  C y l i n d r i c a l  Expansion of Real G a s  w i th  

Shock S t r enq th  G = 2.0 

The f i n i t e  d i f f e r e n c e  approach us ing  t h e  var-  

i a b l e s  and u (Sec t ion  6 )  has been used t o  o b t a i n  a 

s o l u t i o n  of t h e  expansion of t h e  shocjced aluminum ( = 2.0) 

us ing  t h e  t w o  curve f i t s  [r = 4 If) ' Q q p q  
of Sec t ion  8 . 7  t.o desc r ibe  t h e  metal  s t a t e s .  The d i s -  

t r i b u t i o n s  of Q and u a t  t i m e s  t = 0.5,  1 . 0 ,  2.0 

and 3.0 f o r  a c y l i n d r i c a l  expansion a r e  shown i n  F igs .  8,22 

and 8.23, and a r e  of e s s e n t i a l l y  t h e  same c h a r a c t e r  as t h e  

corresponding d i s t r i b u t i o n s  f o r  t h e  p e r f e c t  gas  ( 8 = 3 . 0 )  

expans ion.  

A comparison of t h e  r e a l  gas ( G = 2.0) and 

t h e  p e r f e c t  gas ( 8 = 3.0) s o l u t i o n s  f o r  t h e  d e n s i t y  

d i s t r i b u t i o n s  a s  f u n c t i o n s  of r a t  t imes t = 0.5,  1 . 0  and 

2.0 a r e  shown i n  F igs .  8.24 t o  9.26. A s l i g h t  discrepancy 

i s  immediately noted as t o  t h e  l o c a t i o n  of t h e  p o i n t  of 

ze ro  d e n s i t y ,  t h e  escape f r o n t .  For t h e  p e r f e c t  gas 

c a s e ,  t h e  escape f r o n t  v e l o c i t y  i s  1, f o r  t h e  r e a l  gas  

c a s e ,  t h e  escape f r o n t  v e l o c i t y  has  been found to  be 

0.81243. The g r e a t e s t  d i screpancy  i n  t h e  t w o  s o l u t i o n s  

a t  t ime t = 0.5 (Fig.  8 .24)  occurs  i n  t h e  low d e n s i t y ,  

highly-expanded r eg ion ,  where t h e  e f f e c t i v e  '6. 
from t h e  s t rong  shock approximation i s  no longer  v a l i d .  

c a l c u l a t e d  
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As time increases, the disagreement between the two sol- 

utions becomes increasingly apparent and by time t = 2.0 

(Fig. 5.26), the real gas solution yields a value of 

at the center of 0.200, whereas the perfect gas approx- 

imation yields a value of .BO. 

The perfect gas approximation io thus sufficient 

to describe the expansion of shocked aluminum for this 

shock strength for very short times in the high-density 

region, but becomes increasingly inaccurate as time 

increases. 

8.9 Solution of Cylindrical Expansion of Real Gas With 

Shock Strensth = 1.7 

The impact velocity required to produce a 

shock of given strength in a metai is given approximately 

by : 

a. 2 

- 
where E_ is the internal energy of the shocked gas, and 

V is the velocity of impact. It is found that to pro- 

i j  - 

duce a shock of strength < = 2.0, an impact velocity of 

15.67 km/sec is required. Since such a velocity is 

not experimentally obtainable, although meteorite impacts 

do occur in this velocity range, It was decided to obtain 

a solution for the expansion of a metal which is not so 

strongly shocked. 
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The i s e n t r s p e  f o r  a shock s t r e n g t h  = 1.7 

i n  aluminuin h a s  been obta ined  (Sec t ion  8.7), t h i s  shock 

s t r e n g t h  corresponding t o  an impact v e l o c i t y  of 18.06 km/sec. 

The c y l i n d r i c a l  expansion r e s u l t s  have been ob ta ined  us ing  

t h e  f i n i t e  d i f f e r e n c e  methsd wi th  v a r i a b l e s  

and us ing  t h e  polynomial curve f i t s  IIp"and"a"apprspriate 

t o  t h i s  p a r t i c u l a r  i s e n t r e p e  (Sec t ion  8 . 7 ) .  

Q and u ,  

The d e n s i t y  p r o f i l e s  f Q r  t i m e s  t = (3.25, 8.50, 

1 .00  and 1.25 a r e  shswn i n  Fig.  3.27. 

a s  t i m e  p rogresses  t h e  p o i n t  a t  which t h e  c r i t i c a l  d e n s i t y  

i s  reached moves r a d i a l l y  inward, t h e  c r i t i c a l  d e n s i t y  

be ing  

ion .  A t  t = . 2 5 ,  t h e  c r i t i c a l  r a d i u s  i s  1.053, a% 

t = 0.5,  it i s  1.047, a t  t = 1 . 0  it i s  0.3647, and a t  

t = 1 . 2 5  it i s  0.653. For t = 1 .35 ,  t h e  s o l u t i o n  ind ic -  

a t e s  t h a t  t h e  d e n s i t y  is 

r a d i i ,  and t h e  specimen can be cons idered  t o  have f a i l e d  

i n  i t s  e n t i r e t y .  

I t  i s  seen  t h a t  

the de1isit.y a t  which t h e  m a t e r i a l  f a i l s  i n  tens-  

I 

b e l e w  i t s  c r i t i c a l  va lue  f o r  a l l  
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L C i  

-0.0075342082 

0.0033611059 

1.8051498 

-11.685586 

20.771736 

-26.840525 

a. 9565915 

-0.089059629 

1,1313687 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

7 
a = d; yb- '  

L ' 1  . .  

. 
1, 
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-0.27784690 

( isentrope ) 

( isentrope ) 

( s t a r t i n g  condit ions  ) Q z  
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TABLE 2 

- 
t 

1 
- 

2 

3 

4 

5 

6 

7 - 

0.50557207 

1.24 07 034 

-2.7742933 

5.8613678 

-7.6545925 

5.3192251 

-1.4983452 

1.7 

-275.41494 

2109.7054 

-6688.2209 

11246.781 

-10574.952 

5271.8190 

-1088.7201 

7 

0.55002965 

-0.21778543 

0.44371078 

-0,041185003 

-0,60877374 

-0.35783680 

0.00000 

(isentrope) 

(isentrope) 

(starting conditions) 


